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We describe a 2-dimensional universal property satisfied by the free category-with-products on 

a multigraph. 

Introduction 

This paper is part of a series, beginning with [5-81, analysing the syntactical 

aspects of computer science in terms of free categories with structure, and of presen- 

tations of categories with structure. A considerable amount of work has been done 

on categories with structure by the Sydney school (see for example [I] and the 

references listed there), and by Lambek [3]. However it is a delicate matter to decide 

the precise questions to study. The notion of free category-with-structure used by 

Lambek, while paying appropriate attention to the examples of interest, has not 

given sufficient attention to 2-categorical aspects. On the other hand, Kelly has 

analysed well the 2-categorical aspects, but has concentrated attention on the free 

category-with-structure on a category rather than on the more complicated data that 

arise from the consideration of applications. 

The aim of this work is to analyse a simple and fundamental example in detail, 

namely the free category-with-products on a multigraph, taking into account both 

the 2-categorical considerations and the appropriate data. The main point is to 

describe precisely the correct 2-categorical universal property satisfied by what is a 

well-known construction. It is a matter of refining well-known or expected results 

and concepts. However, we believe that finding the correct universal property is 

crucial for further developments. We finish by giving a simple coherence theorem 

which has applications to combinational circuits. 

Let me describe briefly the 2-categorical universal property, which seems to be ap- 

propriate for many examples of free categories-with-structure. Let %:&, be a 

2-category of categories-with-structure. Often the data in terms of which such a 

category is presented is in practice an object X of some topos E and there is a forget- 
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ful 2-functor ??/ : ‘%%‘gstr + gd,F(E). Now regard X as a discrete category in E. The 

free structured category on X is a category-with-structure 9X, together with a func- 

tor 0 : X + %9X, which, for each category C with structure, induces by composi- 

tion an equivalence of categories 

EkZ&,(@X, C) = %W(E)(X, WC). 

The point is that the codomain of %I is GZ,F(E), not E, and hence the right-hand 

side of this equivalence is a category, and not a set. In some interesting cases the 

universal property is groupoid-enriched rather than category-enriched. 

1. Multigraphs 

Let D be the free category on the graph with objects 

*,0,1,2,3 ,... 

and with n+ 1 arrows from n to * (n=O, 1,2,...): 

d,,d,,d,,...,d,,c. 

Then the category Mgph of multigraphs is Sets”. If X is a multigraph, then the 

elements of X, are called objects, and the elements of X, are called arrows. If f is 

in X, and X, f = Xi (i = 1,2,3, . . .) and X,.f = Y, we write 

f : x, x,x,. . .x, --f Y. 

Let VZxZgx be the 2-category of categories with finite products, product-pre- 

serving functors (in the usual sense) and natural transformations. Then consider a 

forgetful 2-functor ozd: @W’,9x + WJ.Y(Mgph) defined on objects as follows: 

l uzGc*=c, 

l %C, for n 2 0 is the category whose objects are (n + 1)-tuples of arrows of C 

p,:P-A,,p,:P+A,, . . . . p,,:P+A,, f :P-+B 

where P together with p, (i= 1,2,3, . . . . n) is a product diagram in C. The notion 

of arrow in QK, between two such objects is the obvious one. 

l The effect of %!C on arrows is the obvious one. 

To see the definition of % on arrows and 2-cells, notice that a product-preserving 

functor induces a functor in %kZg(Mgph), and that natural transformations be- 

tween product-preserving functors induce natural transformations. 

2. The free category with products on a multigraph 

If X is a multigraph, then the free category-with-products @X on X (in the sense 

of the introduction) is formed as follows. Objects are words or strings in the objects 
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of X. For each object X of X consider a sequence of variables x1,x2,x3, . . . of type 

X. Then arrows in @X are strings of symbols, including commas and brackets, and 

are defined inductively by: 

(i) the variable Xi of type X is an arrow in SX of codomain X and domain any 

word with at least i occurrences of X; 

(ii) If U is an object of 9X, while X1,X2, . . . ,X, are objects of X, and ai : U+ 
Xi are arrows of g’x (i= 1,2,3, . . . . n), then the string (including the commas) 

is an arrow of 9X from U to X,X,.. .X,; 

(iii) If f : X,X2.. .X, + Y is an arrow of X and a : U + X,X2.. .X,, is an arrow of 

g-X, then the string (including the brackets) 

is an arrow of 9X from U to Y. 

In short, arrows are (tuples of) terms constructed out of the arrows of X regarded 

as function symbols. It is clear that the method of construction of an arrow can be 

reconstructed from its form, and its domain and codomain. 

Note. To simplify notation we intend to work loosely with variables. Sometimes xi 

will mean the ith variable of type X, and at other times it will mean the appropriate 

variable of type Xi. 

Composition /I 0 a of arrows a, j3 in gX is defined inductively (on the length of 

p) as follows: 

(i) xiOal,a2, . . . . a, = ai if xi is the variable corresponding to the codomain of 

ai; 

(ii) P1,P2 ,..., PnOa=P100,/320a ,..., &OK 

(iii) f(P) oa=f(/loa) if f is an arrow of X. 

In short, composition is substitution of terms. 

The identity of X,X2.. .X, is x1,x2, . . . ,x,. The associativity of composition 

follows by a straightforward inductive argument. 

To see that @X has finite products, notice that the arrows with codomain 

X,X,...X, are n-tuples of arrows (in a unique way), and part (i) of the definition 

of composition ensures that the object X,X,...X, with projections x1,x2, . . . ,x, is a 

product diagram in .9X. 

Note. In @X, product is a strictly associative operation. 

The functor 0: X--f %?&X is defined as follows: 

0*x = x, 

O,(f :x,x,...x,+ Y) = 
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x,:X,...X, -xj(i= 1,2 ,...) n),f(x, ,..., x,):X,...X,-+Y. 

It remains to check that composition with 0 induces, by composition, an 

equivalence of categories 

EU& (@X, C) = ‘&sW(Mgph)(X, %C). 

Let us first prove that if C is a category with products, then given a functor 

I-: X -+ WZ there is a product-preserving functor P: @X --t C extending r in the 

sense that Q/f..0 is isomorphic to r. 

Such a functor 17 is defined inductively as follows. For each n-tuple of objects 

XI,XZ, *.., X, of X choose a product diagram in C 

p,:rx,xrx,x...xrx,,jrx; (i= 1,2 ,..., n), 

andtakeP(X,Xz...X,,)tobeTX,xTX,x.~.xTX,,. Iff:X,X,...X,+Yisanar- 

row of X, then the image off under r is an arrow 

together with specified projections from rf to TX, (i = 1,2,3, . . . , n), where r, (with 

the specified projections) is a product in C of TX,, rX,, . . . ,rX,. Let 

e+-x,x ... xrx,+c, 

be the unique isomorphism between product diagrams. Then 

(i) P(x,:X,X,...X,-Xi) =pi:rX,Xrx,X...Xrx,-,rxj, 

(ii) Rc-w,, fJ2 )...) cx,):17U4(X1X2...Xn) 

=(~czJo12 )..., ~~,):~u~rx,xrxzx...xrx,, 

(iii) ~f(ff)=rf"ef"~u:~u,rx,x...xrx,jrf~rY. 

It is a straightforward inductive argument that Fpreserves substitution, and hence 

is a functor. Immediate from the definition is the fact that Ppreserves products of 

the basic types, and hence products in general. 

Notice now that o&f..0 is given by 

4~l=.o*x = rx, 

wP.oo,(f : x,x,...x, - Y) = rf Oef. 

It is easy to see that Q, f e X, is a natural isomorphism between r and ef.6). 

Finally, we check that composition with 0 is fully faithful. Consider two product- 

preserving functors @, Y: %WX + C. A natural transformation from @ to Y, and 

a 2-cell from GQ.0 to 02cY.O both amount to a family of arrows, Ax : @X-t YX, 
of C indexed by objects of X, and satisfying, for each f : X,...X, -+ Y of X, 
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The first consequence we will describe of the above analysis is the well-known fact 

(see for example [4]) that every category with products is equivalent to a category 

with strictly associative products. 

Consider a category C with products. The identity 1, : %C + GK in Mgph in- 

duces a product-preserving functor A : SUZGC +C. Factorize this functor into a 

bijective-on-objects functor ,4 t . . @‘%C + C followed by a fully-faithful functor 

AZ: C + C. I claim that (1* is an equivalence, and that C has strictly associative 

products. That il, is an equivalence follows immediately from the fact that /1 is 

clearly surjective on objects. That C has strictly associative products follows from 

the fact that SQK has, and that /11 preserves products and is bijective on objects. 

Note also, by the way, that /1, is full, so that C is obtained from @%C by in- 

troducing some equations. 

The second consequence is a simple coherence theorem, which is closely related 

to the work of Johnson [2] on pasting theorems in a-categories, and which forms 

the basis for the definition of combinational circuits in [8]. 

Consider a finite multigraph X. An object X of X is called an input object if X 

does not occur as the codomain of any arrow in X. Consider the relation between 

objects of X, written as X, a X,, and defined by X, a X2 if X1 occurs in the do- 

main of an arrow f and X, is the codomain off. Consider the transitive closure of 

this relation, also denoted X1 a X,. A loop in X is an object X such that X Q X. 

Definition. A multigraph X is called well formed if 

l Each object is the codomain of at most one arrow, 

l If f :x,x,...x, + Y is an arrow of X and X, = XJ, then i = j. 

Proposition. Consider a finite multigraph X. If X is wellformed and loop free, then 
for each object Y in X there is exactly one arrow in g’x from the product of the 
input objects to Y. 

Proof. Suppose X is well formed and loop free, and that X1,X2, . . . , X, are the in- 

put objects. Then we may define inductively the depth d(X) of an object X as 

follows: 

(i) the depth of an input object is zero, 

(ii) if f: Y,Y,...Y,+ Y is an arrow of X, then d(Y)=maxiZ1,2 ,,,,, ,d(Yi)+ 1. 

The definition is unambiguous since each object is the codomain of at most one ar- 

row. Further, since X is loop free and finite, each object is assigned a depth by this 

prescription (just work backwards from the object). Now we may define an arrow 

from X,X,...X, to Y inductively on the depth of Y. If the depth of Y is zero, take 

the projection. If the depth of Y is greater than zero and f : Y, . ..Y. + Y is an arrow 

of X, then take the arrow from Xi X,.. .X, to be f (a,, az, . . . , a,) where Q; is the 

arrow from X,X,...X, to Y. The fact that there is only one arrow from X,. . .X, 
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to Y may again be seen by considering the depth of Y. Inspecting the description 

of LFX, arrows with codomain Y arise only from variables, and from arrows in X 

with codomain Y. Hence when Y has depth zero, the only arrow from X,X2...Xk 

to Y is the projection. When Y has depth greater than zero, the arrows from 

X,...X, to Y must be of the formf(al,...,cw,) wheref: Y,...Y,,-+Y is in X and q 

is an arrow in g”x from XI.. .X, to Y, to Y. Argument by induction on the depth 

shows that there is only one such arrow. 0 
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